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Release 1.2.2+2.g556898d

Date March 13, 2023

numkit contains numerical helper functions and classes that have been proven to be useful for analysis of molecular
dynamics simulation. The package used to be part of GromacsWrapper.

numkit consists of a collection of functions and classes built on top of NumPy and SciPy to aid the numerical
analysis of data. It is geared towards the use of data coming from molecular simulations, namely time series. It is used
in gromacs.formats.XVG.

Please note that these functions are provided “as is” and no guarantee is given that they are accurate or free from error.
Bug reports and test cases are very welcome. Please submit them through the Github Issue Tracker.

See also:

Core functionality is based on SciPy (scipy module). For more general time series analysis see pandas.
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2 Contents



CHAPTER 1

Contents

1.1 Installation

You can install from Source Code or as a package.

1.1.1 pip installation

Install with pip from the numkit PyPi repository with

pip install numkit

Python 2.7 and recent Python 3 are all supported.

1.1.2 conda installation

New in version 1.2.1.

Changed in version 1.2.2: moved from bioconda to conda-forge channel

Install the conda-forge numkit package with conda package manager from the conda-forge channel with

conda install -c conda-forge numkit

1.2 Source Code

The source code itself is available in the numkit git repository under the BSD 3-clause license (see file LICENSE).
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1.2.1 Public git repository

Get the sources with

git clone https://github.com/Becksteinlab/numkit

and install with

pip install ./numkit

1.2.2 Contributing

Contributions in the form of feedback, bug reports, suggestions and pull requests are very welcome.

1.3 numkit.fitting — Fitting data

The module contains functions to do least square fits of functions of one variable f(x) to data points (x,y).

1.3.1 Example

For example, to fit a un-normalized Gaussian with FitGauss to data distributed with mean 5.0 and standard deviation
3.0:

from numkit.fitting import FitGauss
import numpy, numpy.random

# generate suitably noisy data
mu, sigma = 5.0, 3.0
Y,edges = numpy.histogram(sigma*numpy.random.randn(10000), bins=100, density=True)
X = 0.5*(edges[1:]+edges[:-1]) + mu

g = FitGauss(X, Y)

print(g.parameters)
# [ 4.98084541 3.00044102 1.00069061]
print(numpy.array([mu, sigma, 1]) - g.parameters)
# [ 0.01915459 -0.00044102 -0.00069061]

import matplotlib.pyplot as plt
plt.plot(X, Y, 'ko', label="data")
plt.plot(X, g.fit(X), 'r-', label="fit")

If the initial parameters for the least square optimization do not lead to a solution then one can provide customized
starting values in the parameters keyword argument:

g = FitGauss(X, Y, parameters=[10, 1, 1])

The parameters have different meaning for the different fit functions; the documentation for each function shows them
in the context of the fit function.

4 Chapter 1. Contents
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Fig. 1: A Gaussian (red) was fit to the data points (black circles) with the numkit.fitting.FitGauss class.

1.3.2 Creating new fit functions

New fit function classes can be derived from FitFunc. The documentation and the methods FitFunc.
f_factory() and FitFunc.initial_values() must be overriden. For example, the class FitGauss is
implemented as

class FitGauss(FitFunc):
'''y = f(x) = p[2] * 1/sqrt(2*pi*p[1]**2) * exp(-(x-p[0])**2/(2*p[1]**2))'''
def f_factory(self):

def fitfunc(p,x):
return p[2] * 1.0/(p[1]*numpy.sqrt(2*numpy.pi)) * numpy.exp(-(x-p[0])**2/

→˓(2*p[1]**2))
return fitfunc

def initial_values(self):
return [0.0,1.0,0.0]

The function to be fitted is defined in fitfunc(). The parameters are accessed as p[0], p[1], . . . For each
parameter, a suitable initial value must be provided.

1.3.3 Functions and classes

numkit.fitting.Pearson_r(x, y)
Pearson’s r (correlation coefficient).

Pearson(x,y) –> correlation coefficient

x and y are arrays of same length.

Historical note – Naive implementation of Pearson’s r :: Ex = scipy.stats.mean(x) Ey = scipy.stats.mean(y)
covxy = numpy.sum((x-Ex)*(y-Ey)) r = covxy/math.sqrt(numpy.sum((x-Ex)**2)*numpy.sum((y-Ey)**2))

numkit.fitting.linfit(x, y, dy=None)
Fit a straight line y = a + bx to the data in x and y.

Errors on y should be provided in dy in order to assess the goodness of the fit and derive errors on the parameters.

linfit(x,y[,dy]) –> result_dict

Fit y = a + bx to the data in x and y by analytically minimizing chi^2. dy holds the standard deviations of the
individual y_i. If dy is not given, they are assumed to be constant (note that in this case Q is set to 1 and it is
meaningless and chi2 is normalised to unit standard deviation on all points!).

1.3. numkit.fitting — Fitting data 5
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Returns the parameters a and b, their uncertainties sigma_a and sigma_b, and their correlation coefficient r_ab;
it also returns the chi-squared statistic and the goodness-of-fit probability Q (that the fit would have chi^2 this
large or larger; Q < 10^-2 indicates that the model is bad — Q is the probability that a value of chi-square as
_poor_ as the calculated statistic chi2 should occur by chance.)

Returns result_dict with components

intercept, sigma_intercept a +/- sigma_a

slope, sigma_slope b +/- sigma_b

parameter_correlation correlation coefficient r_ab between a and b

chi_square chi^2 test statistic

Q_fit goodness-of-fit probability

Based on ‘Numerical Recipes in C’, Ch 15.2.

class numkit.fitting.FitFunc(x, y, parameters=None)
Fit a function f to data (x,y) using the method of least squares.

The function is fitted when the object is created, using scipy.optimize.leastsq(). One must derive
from the base class FitFunc and override the FitFunc.f_factory() (including the definition of an
appropriate local fitfunc() function) and FitFunc.initial_values() appropriately. See the exam-
ples for a linear fit FitLin, a 1-parameter exponential fit FitExp, or a 3-parameter double exponential fit
FitExp2.

The object provides two attributes

FitFunc.parameters list of parameters of the fit

FitFunc.message message from scipy.optimize.leastsq()

After a successful fit, the fitted function can be applied to any data (a 1D-numpy array) with FitFunc.fit().

f_factory()
Stub for fit function factory, which returns the fit function. Override for derived classes.

fit(x)
Applies the fit to all x values

initial_values()
List of initital guesses for all parameters p[]

class numkit.fitting.FitLin(x, y, parameters=None)
y = f(x) = p[0]*x + p[1]

class numkit.fitting.FitExp(x, y, parameters=None)
y = f(x) = exp(-p[0]*x)

class numkit.fitting.FitExp2(x, y, parameters=None)
y = f(x) = p[0]*exp(-p[1]*x) + (1-p[0])*exp(-p[2]*x)

class numkit.fitting.FitGauss(x, y, parameters=None)
y = f(x) = p[2] * 1/sqrt(2*pi*p[1]**2) * exp(-(x-p[0])**2/(2*p[1]**2))

Fits an un-normalized gaussian (height scaled with parameter p[2]).

• p[0] == mean $mu$

• p[1] == standard deviation $sigma$

• p[2] == scale $a$

6 Chapter 1. Contents

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html#scipy.optimize.leastsq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html#scipy.optimize.leastsq


numkit Documentation, Release 1.2.2+2.g556898d

1.4 numkit.timeseries — Time series manipulation and analysis

A time series contains of a sequence of time points (typically spaced equally) and a value for each time point. This
module contains some standard scientific time series manipulations.

See also:

pandas

1.4.1 Correlations

Autocorrelation time (time when ACF becomes 0 for the first time; uses gromacs.formats.XVG to read the data
and numkit.timeseries.autocorrelation_fft() to calculate the ACF):

R = gromacs.formats.XVG("./md.xvg")
acf = autocorrelation_fft(R.array[1])
numpy.where(acf <= 0)[0][0]

Alternatively, fit an exponential to the ACF and extract the time constant (see numkit.timeseries.
tcorrel()).

numkit.timeseries.tcorrel(x, y, nstep=100, debug=False)
Calculate the correlation time and an estimate of the error of the mean <y>.

The autocorrelation function f(t) is calculated via FFT on every nstep of the fluctuations of the data around the
mean (y-<y>). The normalized ACF f(t)/f(0) is assumed to decay exponentially, f(t)/f(0) = exp(-t/tc) and the
decay constant tc is estimated as the integral of the ACF from the start up to its first root.

See [FrenkelSmit2002] p526 for details.

Note: nstep should be set sufficiently large so that there are less than ~50,000 entries in the input.

Arguments

x 1D array of abscissa values (typically time)

y 1D array of the ibservable y(x)

nstep only analyze every nstep datapoint to speed up calculation [100]

Returns dictionary with entries tc (decay constant in units of x), t0 (value of the first root along x
(y(t0) = 0)), sigma (error estimate for the mean of y, <y>, corrected for correlations in the data).

numkit.timeseries.autocorrelation_fft(series, remove_mean=True, paddingcorrection=True,
normalize=False, **kwargs)

Calculate the auto correlation function.

autocorrelation_fft(series,remove_mean=False,**kwargs) –> acf

The time series is correlated with itself across its whole length. Only the [0,len(series)[ interval is returned.

By default, the mean of the series is subtracted and the correlation of the fluctuations around the mean are
investigated.

For the default setting remove_mean=True, acf[0] equals the variance of the series, acf[0] = Var(series) = <(se-
ries - <series>)**2>.

Optional:

1.4. numkit.timeseries — Time series manipulation and analysis 7
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• The series can be normalized to its 0-th element so that acf[0] == 1.

• For calculating the acf, 0-padding is used. The ACF should be corrected for the 0-padding (the values for
larger lags are increased) unless mode=’valid’ is set (see below).

Note that the series for mode=’same’|’full’ is inaccurate for long times and should probably be truncated at
1/2*len(series)

Arguments

series (time) series, a 1D numpy array of length N

remove_mean False: use series as is; True: subtract mean(series) from series [True]

paddingcorrection False: corrected for 0-padding; True: return as is it is. (the latter is
appropriate for periodic signals). The correction for element 0=<i<N amounts to a factor
N/(N-i). Only applied for modes != “valid” [True]

normalize True divides by acf[0] so that the first element is 1; False leaves un-normalized
[False]

mode “full” | “same” | “valid”: see scipy.signal.fftconvolve() [“full”]

kwargs other keyword arguments for scipy.signal.fftconvolve()

1.4.2 Coarse graining time series

The functions in this section are all based on regularized_function(). They reduce the number of data-
points in a time series to maxpoints by histogramming the data into maxpoints bins and then applying a function
to reduce the data in each bin. A number of commonly used functions are predefined but it is straightforward
to either use apply_histogrammed_function() or regularized_function() directly. For instance,
mean_histogrammed_function() is implemented as

def mean_histogrammed_function(t, y, maxpoints):
return apply_histogrammed_function(numpy.mean, t, y, maxpoints)

More complicated functions can be defined; for instance, one could use numkit.timeseries.tcorrel() to
compute the correlation time of the data in short blocks:

def tc_histogrammed_function(t, y, maxpoints):
dt = numpy.mean(numpy.diff(t))
def get_tcorrel(y):

t = numpy.cumsum(dt*numpy.ones_like(y)) - dt
results = tcorrel(t, y, nstep=1)
return results['tc']

return apply_histogrammed_function(get_tcorrel, t, y, bins=maxpoints)

(This particular function (implemented as numkit.timeseries.tc_histogrammed_function()) is not
very robust, for instance it has problems when there are only very few data points in each bin because in this case the
auto correlation function is not well defined.)

numkit.timeseries.mean_histogrammed_function(t, y, **kwargs)
Compute mean of data y in bins along t.

Returns the mean-regularised function F and the centers of the bins.

See also:

regularized_function() with func = numpy.mean()
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numkit.timeseries.rms_histogrammed_function(t, y, **kwargs)
Compute root mean square of data y in bins along t.

Returns the RMS-regularised function F and the centers of the bins. demean = True removes the mean first.

regularized_function() with func = sqrt(mean(y*y))

numkit.timeseries.min_histogrammed_function(t, y, **kwargs)
Compute minimum of data y in bins along t.

Returns the min-regularised function F and the centers of the bins.

regularized_function() with func = numpy.min()

numkit.timeseries.max_histogrammed_function(t, y, **kwargs)
Compute maximum of data y in bins along t.

Returns the max-regularised function F and the centers of the bins.

regularized_function() with func = numpy.max()

numkit.timeseries.median_histogrammed_function(t, y, **kwargs)
Compute median of data y in bins along t.

Returns the median-regularised function F and the centers of the bins.

regularized_function() with func = numpy.median()

numkit.timeseries.percentile_histogrammed_function(t, y, **kwargs)
Compute the percentile per of data y in bins along t.

Returns the percentile-regularised function F and the centers of the bins.

Keywords

per percentile as a percentage, e.g. 75 is the value that splits the data into the lower 75% and
upper 25%; 50 is the median [50.0]

demean True: remove the mean of the bin data first [False]

regularized_function() with scipy.stats.scoreatpercentile()

numkit.timeseries.error_histogrammed_function(t, y, **kwargs)
Calculate the error in each bin using tcorrel().

Warning: Not well tested and fragile.

numkit.timeseries.circmean_histogrammed_function(t, y, **kwargs)
Compute circular mean of data y in bins along t.

Returns the circmean-regularised function F and the centers of the bins.

kwargs are passed to scipy.stats.morestats.circmean(), in particular set the lower bound with low
and the upper one with high. The default is [-pi, +pi].

regularized_function() with func = scipy.stats.morestats.circmean()

Note: Data are interpreted as angles in radians.

numkit.timeseries.circstd_histogrammed_function(t, y, **kwargs)
Compute circular standard deviation of data y in bins along t.

Returns the circstd-regularised function F and the centers of the bins.

1.4. numkit.timeseries — Time series manipulation and analysis 9
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kwargs are passed to scipy.stats.morestats.circmean(), in particular set the lower bound with low
and the upper one with high. The default is [-pi, +pi].

regularized_function() with func = scipy.stats.morestats.circstd()

Note: Data are interpreted as angles in radians.

numkit.timeseries.tc_histogrammed_function(t, y, **kwargs)
Calculate the correlation time in each bin using tcorrel().

Warning: Not well tested and fragile.

numkit.timeseries.apply_histogrammed_function(func, t, y, **kwargs)
Compute func of data y in bins along t.

Returns the func -regularised function F(t’) and the centers of the bins t’.

numkit.timeseries.func(y)→ float
func takes exactly one argument, a numpy 1D array y (the values in a single bin of the histogram), and
reduces it to one scalar float.

numkit.timeseries.regularized_function(x, y, func, bins=100, range=None)
Compute func() over data aggregated in bins.

(x,y) --> (x', func(Y')) with Y' = {y: y(x) where x in x' bin}

First the data is collected in bins x’ along x and then func is applied to all data points Y’ that have been collected
in the bin.

numkit.timeseries.func(y)→ float
func takes exactly one argument, a numpy 1D array y (the values in a single bin of the histogram), and
reduces it to one scalar float.

Note: x and y must be 1D arrays.

Arguments

x abscissa values (for binning)

y ordinate values (func is applied)

func a numpy ufunc that takes one argument, func(Y’)

bins number or array

range limits (used with number of bins)

Returns

F,edges function and edges (midpoints = 0.5*(edges[:-1]+edges[1:]))

(This function originated as recsql.sqlfunctions.regularized_function().)

10 Chapter 1. Contents
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1.4.3 Smoothing time series

Function numkit.timeseries.smooth() applies a window kernel to a time series and smoothes fluctuations.
The number of points in the time series stays the same.

numkit.timeseries.smooth(x, window_len=11, window=’flat’)
smooth the data using a window with requested size.

This method is based on the convolution of a scaled window with the signal. The signal is prepared by introduc-
ing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the
begining and end part of the output signal.

Arguments

x the input signal, 1D array

window_len the dimension of the smoothing window, always converted to an integer (using
int()) and must be odd

window the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’; flat win-
dow will produce a moving average smoothing. If window is a numpy.ndarray then
this array is directly used as the window (but it still must contain an odd number of points)
[“flat”]

Returns the smoothed signal as a 1D array

Example

Apply a simple moving average to a noisy harmonic signal:

>>> import numpy as np
>>> t = np.linspace(-2, 2, 201)
>>> x = np.sin(t) + np.random.randn(len(t))*0.1
>>> y = smooth(x)

Source: based on http://www.scipy.org/Cookbook/SignalSmooth

numkit.timeseries.smoothing_window_length(resolution, t)
Compute the length of a smooting window of resolution time units.

Arguments

resolution length in units of the time in which t us supplied

t array of time points; if not equidistantly spaced, the mean spacing is used to compute the
window length

Returns odd integer, the size of a window of approximately resolution

See also:

smooth()

1.4.4 Exceptions

exception numkit.timeseries.LowAccuracyWarning
Warns that results may possibly have low accuracy.

1.4. numkit.timeseries — Time series manipulation and analysis 11
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1.5 numkit.integration — Numerical integration of data

See also:

scipy.integrate

numkit.integration.simps_error(dy, x=None, dx=1, axis=-1, even=’avg’)
Error on integral evaluated with Simpson’s rule from errors of points, dy.

Evaluate the integral with scipy.integrate.simps(). For a given vector dy of errors on the function
values, the error on the integral is calculated via propagation of errors from the Newton-Cotes formula for the 3rd
Lagrange interpolating polynomial. The results are exact for the cases of even spacing dx; for uneven spacing
we currently average all spacings (exact solution is in the works. . . )

Arguments

dy errors for the tabulated values of the integrand f

x values of abscissa at which f was tabulated (can be None and then dx should be provided)

dx constant spacing of the abscissa

axis axis in dy along which the data lies

even see scipy.integrate.simps() (‘avg’, ‘first’, ‘last’)

1.6 numkit.observables — Observables as quantities with errors

Example showing how to use QuantityWithError:

>>> from numkit.observables import QuantityWithError
>>> a = QuantityWithError(2.0, 1.0)
>>> a2 = QuantityWithError(2.0, 1.0) # 2nd independent measurement of a
>>> a3 = QuantityWithError(2.0, 1.0) # 3rd independent measurement of a
>>> b = QuantityWithError(-1, 0.5)
>>> a+a
4 (2)
>>> a+a2
4 (1.41421)
>>> (a+a+a)/3
2 (1)
>>> (a+a2+a3)/3
2 (0.57735)
>>> a/b
-2 (1.41421)

Note that each quantity has an identity: it makes a difference to the error of a combined quantity such as a+a if the
inputs are independent measurements of the same.

See also:

Various packages that describe quantities with units, in particular quantities.

1.6.1 Classes

class numkit.observables.QuantityWithError(value, error=None, qid=None, **kwargs)
Number with error and basic error propagation arithmetic.

12 Chapter 1. Contents
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The quantity is assumed to be a mean of an observable (value) with an associated (Gaussian) error error
(which is the sqrt of the variance variance of the data).

The covariance is not taken into account in the error propagation (i.e. all quantities are assumed to be uncorre-
lated) with the exception of the case of binary relations of the quantity with itself. For instance, a*a is correctly
interpreted as a**2). However, this behaviour is not guaranteed to work for any complicated expression.

value
Value of the observable 𝐴, typically the mean of a number of observations, ⟨𝐴⟩.

variance
Variance ⟨(𝐴− ⟨𝐴⟩)2⟩ of the observable. Changing the variance automatically changes the error.

static asQuantityWithError(other)
Return a QuantityWithError.

If the input is already a QuantityWithError then it is returned itself. This is important because a
new quantity x’ would be considered independent from the original one x and thus lead to different error
estimates for quantities such as x*x versus x*x’.

astuple()
Return tuple (value,error).

copy()
Create a new quantity with the same value and error.

deepcopy()
Create an exact copy with the same identity.

error
Error of the observable.

The error is taken as the square root of the variance of the observations,
√︀

⟨(𝐴− ⟨𝐴⟩)2⟩.

Changing the error automatically changes the variance.

isSame(other)
Check if other is 100% correlated with self.

True if

• other is the same observable (instance)

• other was derived from self without using any other independent quantities with errors, e.g.

>>> a = QuantityWithError(1.0, 0.5)
>>> b = a**2 - a*2
>>> a.isSame(b)
True

False if

• other is a scalar (without an error), or

• other was computed from self without involvement of any other observables.

Limitations: How should one treat the case when a quantity is used again in an operation, e.g.

c = a + b
d = c/a

How to compute the error on d? What should the result for c.isSame(a) be?

1.6. numkit.observables — Observables as quantities with errors 13
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class numkit.observables.QID
Identity of a QuantityWithError.

The basic idea:

QID(iterable) --> identity
QID() --> ``None``

The anonymous identity is None, anything else is a frozenset().

The QID can contain arbitray (but unique) identifiers in the iterable; however, strings are treated as individual
objects and not as iterables.

The error arithmetic encapsulated by the operator-overloading of QuantityWithError builds new QIDs by
accumulating QIDs of the terms of the expression. In a certain sense, the “history” of a quantity becomes its
“identity”.

union(x)
Return the union of sets as a new set.

(i.e. all elements that are in either set.)

1.6.2 Functions

numkit.observables.iterable(obj)
Returns True if obj can be iterated over and is not a string.

numkit.observables.asiterable(obj)
Returns obj so that it can be iterated over; a string is not treated as iterable

14 Chapter 1. Contents
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